If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x-96.5=0
a = 2; b = 10; c = -96.5;
Δ = b2-4ac
Δ = 102-4·2·(-96.5)
Δ = 872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{872}=\sqrt{4*218}=\sqrt{4}*\sqrt{218}=2\sqrt{218}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{218}}{2*2}=\frac{-10-2\sqrt{218}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{218}}{2*2}=\frac{-10+2\sqrt{218}}{4} $
| 8+m÷5=4-3m | | 6g+2(-6+3g)=1+g | | 4m+5=-3 | | 2x-9/4x=5/4x+15/4 | | 0.5×(4x-3)=0.2×(x-5) | | 40=17.5-(1/(0.03x18))x1.5 | | 0.5×(4x-3)=02×(x-5) | | -5(7x-5)+3x=-199 | | 0,5×(4x-3)=0,2×(x-5) | | 2(x-4)=7-5(x-3)-3x | | 6/x=15/9 | | 0,5×(4x-3)=0,2×(x-5 | | 10-v=7+6(-6+2v) | | 7q−7q+4q+q+3q+1=17 | | 4x-16=-3(1-x)-6 | | 8(6x+1)=-35+5x | | -9-r=7+3r-6r | | 14+x=-6x-6+6 | | 57=n+n+1 | | 6(2x-3)+4=3(3x-9)+65 | | 6(2x-3)+4=3(3x-9)+64 | | 400=11+8.75+30h | | p/3=8 | | -8-3w+13=4w+44-7w | | 30h+8.75+11=400 | | a=3.14(3)^2 | | 4x(3x+40)=20 | | 4x+9=2(3x+7) | | X=4x(3x+40) | | (4x^2+24x+9)(2×-3)=8×^3+36x^2-54x-35 | | 7y+5=2y+7 | | -3-3(v+7)=-22-5v |